Effect of hypoxia and Beraprost sodium on human pulmonary arterial smooth muscle cell proliferation: the role of p27kip1

نویسندگان

  • Maiko Kadowaki
  • Shiro Mizuno
  • Yoshiki Demura
  • Shingo Ameshima
  • Isamu Miyamori
  • Takeshi Ishizaki
چکیده

BACKGROUND Hypoxia induces the proliferation of pulmonary arterial smooth muscle cell (PASMC) in vivo and in vitro, and prostacyclin analogues are thought to inhibit the growth of PASMC. Previous studies suggest that p27kip1, a kind of cyclin-dependent kinase inhibitor, play an important role in the smooth muscle cell proliferation. However, the mechanism of hypoxia and the subcellular interactions between p27kip1 and prostacyclin analogues in human pulmonary arterial smooth muscle cell (HPASMC) are not fully understood. METHODS We investigated the role of p27kip1 in the ability of Beraprost sodium (BPS; a stable prostacyclin analogue) to inhibit the proliferation of HPASMC during hypoxia. To clarify the biological effects of hypoxic air exposure and BPS on HPASMC, the cells were cultured in a hypoxic chamber under various oxygen concentrations (0.1-21%). Thereafter, DNA synthesis was measured as bromodeoxyuridine (BrdU) incorporation, the cell cycle was analyzed by flow cytometry with propidium iodide staining. The p27kip1 mRNA and protein expression and it's stability was measured by real-time RT-PCR and Western blotting. Further, we assessed the role of p27kip1 in HPASMC proliferation using p27kip1 gene knockdown using small interfering RNA (siRNA) transfection. RESULTS Although severe hypoxia (0.1% oxygen) suppressed the proliferation of serum-stimulated HPASMC, moderate hypoxia (2% oxygen) enhanced proliferation in accordance with enhanced p27kip1 protein degradation, whereas BPS suppressed HPASMC proliferation under both hypoxic and normoxic conditions by suppressing p27kip1 degradation with intracellular cAMP-elevation. The 8-bromo-cyclic adenosine monophosphate (8-Br-cAMP), a cAMP analogue, had similar action as BPS in the regulation of p27kip1. Moderate hypoxia did not affect the stability of p27kip1 protein expression, but PDGF, known as major hypoxia-induced growth factors, significantly decreased p27kip1 protein stability. We also demonstrated that BPS and 8-Br-cAMP suppressed HPASMC proliferation under both hypoxic and normoxic conditions by blocking p27kip1 mRNA degradation. Furthermore, p27kip1 gene silencing partially attenuated the effects of BPS and partially restored hypoxia-induced proliferation. CONCLUSION Our study suggests that moderate hypoxia induces HPASMC proliferation, which is partially dependent of p27kip1 down-regulation probably via the induction of growth factors such as PDGF, and BPS inhibits both the cell proliferation and p27kip1 mRNA degradation through cAMP pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of Notch3 promotes pulmonary arterial smooth muscle cells proliferation via Hes1/p27Kip1 signaling pathway

Activation of the Notch3 cascade is involved in the development of pulmonary arterial hypertension by stimulating the proliferation of vascular smooth muscle cells. However, the detailed molecular mechanisms underlying this effect are still unclear. The present study aims to address this issue. We demonstrated that over-expression of intracellular domain of the Notch3 receptor (NICD3) by adenov...

متن کامل

Wnt5a inhibits hypoxia-induced pulmonary arterial smooth muscle cell proliferation by downregulation of β-catenin.

Chronic hypoxia-induced pulmonary arterial hypertension (HPH) is closely associated with profound vascular remodeling, especially pulmonary arterial medial hypertrophy and muscularization due to hyperplasia of pulmonary artery smooth muscle cells (PASMCs). Aberrant Wnt signaling has been associated with lung diseases, but its role in pulmonary hypertension is unclear. This study evaluated the e...

متن کامل

Mevastatin can cause G1 arrest and induce apoptosis in pulmonary artery smooth muscle cells through a p27Kip1-independent pathway.

Advanced pulmonary arterial hypertension is characterized by extensive vascular remodeling that is usually resistant to vasodilator therapy. Mevastatin is an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, the rate-limiting step for cholesterol synthesis. HMG-CoA reductase inhibitors have been shown to upregulate the cyclin-dependent kinase inhibitor p27Kip1 and to block...

متن کامل

Differential effects of formoterol on thrombin- and PDGF-induced proliferation of human pulmonary arterial vascular smooth muscle cells

BACKGROUND Increased pulmonary arterial vascular smooth muscle (PAVSM) cell proliferation is a key pathophysiological component of pulmonary vascular remodeling in pulmonary arterial hypertension (PH). The long-acting β2-adrenergic receptor (β2AR) agonist formoterol, a racemate comprised of (R,R)- and (S,S)-enantiomers, is commonly used as a vasodilator in chronic obstructive pulmonary disease ...

متن کامل

Nanoparticle-Mediated Drug Delivery System for Pulmonary Arterial Hypertension

Nanoparticles have been used as a novel drug delivery system. Drug-incorporated nanoparticles for local delivery might optimize the efficacy and minimize the side effects of drugs. The efficacy and safety of intratracheal administration of prostacyclin analog (beraprost) -incorporated nanoparticles and imatinib (a PDGF-receptor tyrosine kinase inhibitor) -incorporated nanoparticles in Sugen-hyp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Respiratory Research

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2007